Key Hormonal Components Regulate Agronomically Important Traits in Barley
نویسندگان
چکیده
The development and growth of plant organs is regulated by phytohormones, which constitute an important area of plant science. The last decade has seen a rapid increase in the unravelling of the pathways by which phytohormones exert their influence. Phytohormones function as signalling molecules that interact through a complex network to control development traits. They integrate metabolic and developmental events and regulate plant responses to biotic and abiotic stress factors. As such, they influence the yield and quality of crops. Recent studies on barley have emphasised the importance of phytohormones in promoting agronomically important traits such as tillering, plant height, leaf blade area and spike/spikelet development. Understanding the mechanisms of how phytohormones interact may help to modify barley architecture and thereby improve its adaptation and yield. To achieve this goal, extensive functional validation analyses are necessary to better understand the complex dynamics of phytohormone interactions and phytohormone networks that underlie the biological processes. The present review summarises the current knowledge on the crosstalk between phytohormones and their roles in barley development. Furthermore, an overview of how phytohormone modulation may help to improve barley plant architecture is also provided.
منابع مشابه
Barley Genomics: An Overview
Barley (Hordeum vulgare), first domesticated in the Near East, is a well-studied crop in terms of genetics, genomics, and breeding and qualifies as a model plant for Triticeae research. Recent advances made in barley genomics mainly include the following: (i) rapid accumulation of EST sequence data, (ii) growing number of studies on transcriptome, proteome, and metabolome, (iii) new modeling te...
متن کاملMutations in Barley Row Type Genes Have Pleiotropic Effects on Shoot Branching
Cereal crop yield is determined by different yield components such as seed weight, seed number per spike and the tiller number and spikes. Negative correlations between these traits are often attributed to resource limitation. However, recent evidence suggests that the same genes or regulatory modules can regulate both inflorescence branching and tillering. It is therefore important to explore ...
متن کاملGeneration mean analysis for yield components in common bean. Nasim Akhshi1, Kianoush Cheghamirza2 &3, Farhad Nazarian-Firouzabadi1*, Hadi Ahmadi1
In order to choose an efficient breeding procedure, it is necessary to have knowledge of the genetic system controlling agronomically important traits. Common bean is one of the major legumes containing large amount of proteins and other valuable nutrients. The aim of this study was to determine genetic parameters for yield and yield components, using six generations (P1, P2, F1, F2, BC1, and B...
متن کاملOptimization of traits to increasing barley grain yield using an artificial neural network
The grain yield (Y) of crops is determined by several Y components that reflect positive or negative effects. Conventionally, ordinary Y components are screened for the highest direct effect on Y. Increasing one component tends to be somewhat counterbalanced by a concomitant reduction in other component (s) due to competition for assimilates. Therefore, it has been suggested that components...
متن کاملGenotyping single nucleotide polymorphisms in barley by tetra-primer ARMS-PCR.
Single nucleotide polymorphisms (SNPs) are the most abundant form of DNA polymorphism. These polymorphisms can be used in plants as simple genetic markers for many breeding applications, for population studies, and for germplasm fingerprinting. The great increase in the available DNA sequences in the databases has made it possible to identify SNPs by "database mining", and the single most impor...
متن کامل